Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

C-type $\mathrm{Nd}_{2} \mathrm{Se}_{3}$

Christof Schneck, Patrick Höss and Thomas Schleid*

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
Correspondence e-mail: schleid@iac.uni-stuttgart.de

Received 26 January 2009; accepted 16 February 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{Nd}-\mathrm{Se})=0.0005 \AA$; R factor $=0.026 ; w R$ factor $=0.060$; data-to-parameter ratio $=31.4$.

The title compound, neodymium sesquiselenide, is isotypic with the other known rare-earth metal(III) selenides $M_{2} \mathrm{Se}_{3}$ ($M=\mathrm{La}-\mathrm{Pr}$ and $\mathrm{Sm}-\mathrm{Lu}$) with the cubic C-type structure. It adopts a cation-defective $\mathrm{Th}_{3} \mathrm{P}_{4}$-type arrangement with close to $8 / 9$ of the unique neodymium-cation site occupied, leading to the composition $\mathrm{Nd}_{2.667} \mathrm{Se}_{4}(Z=4)$ or $\mathrm{Nd}_{2} \mathrm{Se}_{3}(Z=5.333)$, respectively. The Nd^{3+} cations are thus surrounded by eight selenide anions, forming trigonal $\left[\mathrm{NdSe}_{8}\right]^{13-}$ dodecahedra, whereas the Se^{2-} anions exhibit a sixfold coordination, but due to the under-occupation of neodymium, each one is statistically surrounded by only 5.333 cations. The crystal studied was a merohedral twin with a 0.31 (6):0.69 (6) domain ratio.

Related literature

For the structural family with the cation-defective $\mathrm{Th}_{3} \mathrm{P}_{4}$-type arrangement, see: Pardo et al. (1963); Flahaut et al. (1965); Lashkarev \& Paderno (1965). For the rare-earth sesquiselenides $M_{2} \mathrm{Se}_{3}$ with $M=\mathrm{La}-\mathrm{Pr}$ and $\mathrm{Sm}-\mathrm{Lu}$, see: Grundmeier \& Urland (1995); Folchnandt (1997); Folchnandt \& Schleid (2001); Folchnandt et al. (2004).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{Nd}_{2.667} \mathrm{Se}_{4} \\
& M_{r}=700.48 \\
& \text { Cubic, } I \overline{4} 3 d \\
& a=8.8632(6) \AA \\
& V=696.26(8) \AA^{3}
\end{aligned}
$$

Data collection
Stoe IPDS-I diffractometer Absorption correction: numerical (X-SHAPE; Stoe \& Cie, 1999) $T_{\text {min }}=0.305, T_{\text {max }}=0.401$

8964 measured reflections 220 independent reflections 214 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.065$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.060$
$S=1.22$
$\Delta \rho_{\max }=1.01 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-2.11 \mathrm{e} \mathrm{A}^{-3}$
220 reflections
7 parameters

Absolute structure: Flack (1983), 92
Friedel pairs
Flack parameter: 0.31 (6)

Table 1
Selected bond lengths (\AA).

$\mathrm{Nd}-\mathrm{Se}^{\mathrm{i}}(4 \times)$	$2.9675(5)$	$\mathrm{Nd}-\mathrm{Se}(4 \times)$	$3.1732(6)$
Symmetry codes: $(\mathrm{i})-x+\frac{1}{2},-y, z+\frac{1}{2}$.			

Data collection: DIF4 (Stoe \& Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Financial support by the state of Baden-Württemberg (Stuttgart) and the Deutsche Forschungsgemeinschaft (DFG; Frankfurt/Main) is gratefully acknowledged. Furthermore we thank Dr Falk Lissner for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2064).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flahaut, J., Guittard, M., Patrie, M., Pardo, M. P., Golabi, S. M. \& Domange, L. (1965). Acta Cryst. 19, 14-19.

Folchnandt, M. (1997). Dissertation, University of Stuttgart, Germany.
Folchnandt, M. \& Schleid, Th. (2001). Z. Anorg. Allg. Chem. 627, 1411-1413.
Folchnandt, M., Schneck, C. \& Schleid, Th. (2004). Z. Anorg. Allg. Chem. 630, 149-155.
Grundmeier, T. \& Urland, W. (1995). Z. Anorg. Allg. Chem. 621, 1977-1979.
Lashkarev, G. V. \& Paderno, Y. B. (1965). Inorg. Mater. (USSR), 1, 1620-1623.
Pardo, M. P., Flahaut, J. \& Domange, L. (1963). C. R. Acad. Sci., 256, 17931796.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (1992). DIF4 and REDU4. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1999). X-SHAPE. Stoe \& Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2009). E65, i20 [doi:10.1107/S1600536809005455]

C-type $\mathbf{N d}_{2} \mathrm{Se}_{3}$

C. Schneck, P. Höss and T. Schleid

Comment

C-type $\mathrm{Nd}_{2} \mathrm{Se}_{3}$ (Fig. 1) belongs to a structural family with the cation-defect $\mathrm{Th}_{3} \mathrm{P}_{4}$-type arrangement (Pardo et al., 1963; Flahaut et al., 1965; Lashkarev \& Paderno, 1965) adopted by rare-earth sesquiselenides $M_{2} \mathrm{Se}_{3}$ with $M=\mathrm{La}-\mathrm{Pr}$ and Sm - Lu (Grundmeier \& Urland, 1995; Folchnandt, 1997; Folchnandt \& Schleid, 2001; Folchnandt et al., 2004) following the general formula $M_{2.667} \square_{0.333} \mathrm{Se}_{4}$. The Nd^{3+} cations occupy the $12 a$ position, whereas selenium resides at the $16 c$ position. Despite the fact that out of the 12 possible cationic sites (per $16 \mathrm{Se}^{2-}$ and unit cell), only 10.667 are allowed to be occupied to realise the composition $\mathrm{Nd}_{2} \mathrm{Se}_{3}$ (with $Z=5.333$, i.e. $M_{2.667} \square_{0.333} \mathrm{Se}_{4}$ with $Z=4$); these exhibit the coordination number 8 with respect to the selenide anions. The $\left[\mathrm{NdSe}_{8}\right]^{13-}$ coordination polyhedra can be described as trigonal dodecahedra with 4 -symmetry (Fig. 2). On average, the Se^{2-} anions are surrounded by $5.333 \mathrm{Nd}^{3+}$ cations in a trigonal hemiprism of symmetry .3. with faces rotated 38.2° with respect to each other (Fig. 3).

Experimental

Ruby-red, multifaceted, transparent crystals of $\mathrm{Nd}_{2} \mathrm{Se}_{3}$ were obtained from stoichiometric reaction of the elements in the presence of CsCl as a flux, placed within a torch-sealed evacuated fused-silica vessel. The mixture was heated at 1123 K for seven days, followed by cooling to ambient temperature with $10 \mathrm{~K} / \mathrm{h}$.

Figures

Fig. 1. Crystal structure of C-Type $\mathrm{Nd}_{2} \mathrm{Se}_{3}$.

Fig. 2. Coordination sphere of the Nd^{3+} cation in the shape of a trigonal dodecahedron. Displacement ellipsoids are drawn at 95% probability level. [Symmetry codes: (i) $-x+1 / 2,-y, z+$ $1 / 2$; (ii) $y+1 / 4, x+1 / 4, z+1 / 4$; (iii) $y+1 / 4,-x-1 / 4,-z+1 / 4$; (iv) $-x+1 / 2, y,-z$; (v) $-y+3 / 4$, $-x+1 / 4, z+1 / 4$; (vi) $-y+3 / 4, x-1 / 4,-z+1 / 4$; (vii) $x,-y,-z+1 / 2$.]

supplementary materials

Fig. 3. Coordination sphere of the Se^{2-} anion. Due to the under-occupation of the neodymium site, each selenium is surrounded by $5.333 \mathrm{Nd}^{3+}$ cations. Displacement ellipsoids are drawn at 95% probability level. [Symmetry codes: (viii) $y,-z,-x+1 / 2$; (ix) $-x+1 / 2,-y, z-1 / 2 ;(x)-y-$ $1 / 4, x-1 / 4,-z+1 / 4$; (xi) y, z, x; (xii) $y+1 / 4,-x+3 / 4,-z+1 / 4$.]

dineodymium(III) triselenide

Crystal data

$\mathrm{Nd}_{2.667} \mathrm{Se}_{4}$
$M_{r}=700.48$
Cubic, $\sqrt{4} 3$ d
Hall symbol: I -4bd 2c 3
$a=8.8632$ (6) \AA
$b=8.8632$ (6) \AA
$c=8.8632(6) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=90^{\circ}$
$V=696.26(8) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& F_{000}=1184 \\
& D_{\mathrm{x}}=6.682 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo Ka radiation } \\
& \lambda=0.71069 \AA \\
& \text { Cell parameters from } 5000 \text { reflections } \\
& \theta=1.0-32.7^{\circ} \\
& \mu=40.39 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, red } \\
& 0.03 \times 0.03 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS-I
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293 \mathrm{~K}$
imaging plate detector system scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1999)
$T_{\text {min }}=0.305, T_{\text {max }}=0.401$
8964 measured reflections
220 independent reflections
214 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.065$
$\theta_{\text {max }}=32.7^{\circ}$
$\theta_{\min }=5.6^{\circ}$
$h=-13 \rightarrow 13$
$k=-13 \rightarrow 13$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$\omega R\left(F^{2}\right)=0.060$
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0359 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.007$
$\Delta \rho_{\max }=1.01 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-2.11 \mathrm{e} \AA^{-3}$
$S=1.22$
220 reflections
7 parameters
Primary atom site location: structure-invariant direct methods

Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0086 (7)
Absolute structure: Flack (1983), 92 Friedel pairs
Flack parameter: 0.31 (6)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Nd	0.3750	0.0000	0.2500	$0.0053(2)$	0.89
Se	$0.07261(5)$	$0.07261(5)$	$0.07261(5)$	$0.0028(3)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd	$0.0066(3)$	$0.0046(3)$	$0.0046(3)$	0.000	0.000	0.000
Se	$0.0028(3)$	$0.0028(3)$	$0.0028(3)$	$0.00063(16)$	$0.00063(16)$	$0.00063(16)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Nd}-\mathrm{Se}^{\mathrm{i}}$	2.9675 (5)	Nd-Se	3.1732 (6)
$\mathrm{Nd}-\mathrm{Se}^{\text {ii }}$	2.9675 (5)	$\mathrm{Se}-\mathrm{Nd}^{\text {viii }}$	2.9675 (5)
Nd-Se ${ }^{\text {iii }}$	2.9675 (5)	$\mathrm{Se}-\mathrm{Nd}{ }^{\text {ix }}$	2.9675 (5)
Nd-Se ${ }^{\text {iv }}$	2.9675 (5)	$\mathrm{Se}-\mathrm{Nd}^{\text {x }}$	2.9675 (5)
$\mathrm{Nd}-\mathrm{Se}^{\mathrm{v}}$	3.1732 (6)	$\mathrm{Se}-\mathrm{Nd}^{\text {xi }}$	3.1732 (6)
$\mathrm{Nd}-\mathrm{Se}^{\text {vi }}$	3.1732 (6)	$\mathrm{Se}-\mathrm{Nd}^{\text {xii }}$	3.1732 (6)
$\mathrm{Nd}-\mathrm{Se}^{\text {vii }}$	3.1732 (6)		
Se ${ }^{\text {i }}-\mathrm{Nd}-\mathrm{Se}^{\text {ii }}$	91.403 (3)	$\mathrm{Se}^{\mathrm{ii}}-\mathrm{Nd}-\mathrm{Se}$	77.283 (2)
Se ${ }^{\text {i }}-\mathrm{Nd}-\mathrm{Se}^{\text {iii }}$	91.403 (3)	Se ${ }^{\text {iii }}-\mathrm{Nd}-\mathrm{Se}$	87.467 (16)
Se ${ }^{\text {iii }}-\mathrm{Nd}-\mathrm{Se}^{\text {iii }}$	162.00 (2)	$\mathrm{Se}^{\mathrm{iv}}-\mathrm{Nd}-\mathrm{Se}$	67.092 (10)
Se ${ }^{\text {i }}-\mathrm{Nd}-\mathrm{Se}^{\text {iv }}$	162.00 (2)	$\mathrm{Se}^{\mathrm{v}}-\mathrm{Nd}-\mathrm{Se}$	135.510 (1)
Se ${ }^{\text {iii }}-\mathrm{Nd}-\mathrm{Se}^{\text {iv }}$	91.403 (3)	$\mathrm{Se}^{\text {vi }}-\mathrm{Nd}-\mathrm{Se}$	135.510 (1)

supplementary materials

Se ${ }^{\text {iiii }}-\mathrm{Nd}-\mathrm{Se}^{\text {iv }}$	91.403 (3)	Se ${ }^{\text {vii }}$ - $\mathrm{Nd}-\mathrm{Se}$	64.738 (1)
Se ${ }^{\text {i }}-\mathrm{Nd}-\mathrm{Se}^{\mathrm{v}}$	77.284 (2)	Nd ${ }^{\text {viii }}-\mathrm{Se}-\mathrm{Nd}^{\text {ix }}$	88.609 (17)
$\mathrm{Se}^{\mathrm{ii}}-\mathrm{Nd}-\mathrm{Se}^{\mathrm{v}}$	67.092 (10)	$\mathrm{Nd}^{\text {viii }}-\mathrm{Se}-\mathrm{Nd}^{\text {x }}$	88.609 (17)
Se ${ }^{\text {iii }}-\mathrm{Nd}-\mathrm{Se}^{\mathrm{v}}$	130.811 (11)	Nd ${ }^{\text {ix }}-\mathrm{Se}-\mathrm{Nd}^{\mathrm{x}}$	88.609 (17)
$\mathrm{Se}^{\text {iv }}-\mathrm{Nd}-\mathrm{Se}^{\text {v }}$	87.468 (16)	$\mathrm{Nd}{ }^{\text {viii }}-\mathrm{Se}-\mathrm{Nd}^{\text {xi }}$	107.535 (2)
Se ${ }^{\text {i }}-\mathrm{Nd}-\mathrm{Se}^{\text {vi }}$	87.468 (16)	Nd ${ }^{\text {ix }}-\mathrm{Se}-\mathrm{Nd}^{\text {xi }}$	162.372 (6)
$\mathrm{Se}^{\mathrm{ii}}-\mathrm{Nd}-\mathrm{Se}^{\mathrm{vi}}$	130.811 (11)	$N d^{\text {x }}-\mathrm{Se}-\mathrm{Nd}^{\text {xi }}$	84.849 (2)
$\mathrm{Se}^{\text {iii }}-\mathrm{Nd}-\mathrm{Se}^{\text {vi }}$	67.092 (10)	Nd ${ }^{\text {viii }}-\mathrm{Se}-\mathrm{Nd}^{\text {xii }}$	162.372 (6)
$\mathrm{Se}^{\text {iv }}-\mathrm{Nd}-\mathrm{Se}^{\text {vi }}$	77.283 (2)	$\mathrm{Nd}^{\text {ix }}-\mathrm{Se}-\mathrm{Nd}^{\text {xii }}$	84.849 (2)
$\mathrm{Se}^{\mathrm{v}}-\mathrm{Nd}-\mathrm{Se}^{\mathrm{vi}}$	64.739 (1)	$\mathrm{Nd}^{\mathrm{x}}-\mathrm{Se}-\mathrm{Nd}^{\text {xii }}$	107.534 (2)
$\mathrm{Se}^{\mathrm{i}}-\mathrm{Nd}-\mathrm{Se}^{\text {vii }}$	67.092 (10)	$\mathrm{Nd}^{\text {xi }}-\mathrm{Se}-\mathrm{Nd}^{\text {xii }}$	81.565 (16)
Se ${ }^{\text {iii }}-\mathrm{Nd}-\mathrm{Se}^{\text {vii }}$	87.468 (16)	$\mathrm{Nd}^{\text {viii }} \mathrm{Se}-\mathrm{Nd}$	84.849 (2)
Se ${ }^{\text {iiii }}-\mathrm{Nd}-\mathrm{Se}^{\text {vii }}$	77.283 (2)	$\mathrm{Nd}{ }^{\text {ix }}-\mathrm{Se}-\mathrm{Nd}$	107.535 (2)
Se ${ }^{\text {iv }}-\mathrm{Nd}-\mathrm{Se}^{\text {vii }}$	130.810 (11)	$\mathrm{Nd}^{\mathrm{x}}-\mathrm{Se}-\mathrm{Nd}$	162.372 (6)
Se ${ }^{\mathrm{v}}-\mathrm{Nd}-\mathrm{Se}^{\text {vii }}$	135.510 (1)	$\mathrm{Nd}^{\text {xi}}-\mathrm{Se}-\mathrm{Nd}$	81.565 (16)
$\mathrm{Se}^{\text {vi }}-\mathrm{Nd}-\mathrm{Se}^{\text {vii }}$	135.510 (1)	$\mathrm{Nd}{ }^{\text {xii }}-\mathrm{Se}-\mathrm{Nd}$	81.565 (16)
Se ${ }^{\text {i }}$ - $\mathrm{Nd}-\mathrm{Se}$	130.811 (11)		
$\begin{aligned} & \text { Symmetry codes: (i) }-x+1 / 2,-y, z+1 / 2 \text {; (ii) } y+1 / 4, x+1 / 4, z+1 / 4 \text {; (iii) } y+1 / 4,-x-1 / 4,-z+1 / 4 \text {; (iv) }-x+1 / 2, y,-z \text {; (v) }-y+3 / 4,-x+1 / 4 \text {, } \\ & z+1 / 4 \text {; (vi) }-y+3 / 4, x-1 / 4,-z+1 / 4 \text {; (vii) } x \text {, }-y,-z+1 / 2 \text {; (viii) } y,-z,-x+1 / 2 \text {; (ix) }-x+1 / 2,-y, z-1 / 2 \text {; (x) }-y-1 / 4, x-1 / 4,-z+1 / 4 \text {; (xi) } y, z, x \text {; } \\ & \text { (xii) } y+1 / 4,-x+3 / 4,-z+1 / 4 \text {. } \end{aligned}$			

Fig. 1

supplementary materials

Fig. 2

Fig. 3

